Electronic Journal: Southwest Journal of Pure and Applied Mathematics
Internet: http://rattler.cameron.edu/swjpam.html

ISBN 1083-0464

Issue 1 July 1999, pp. 1 — 12

Submitted: April 4, 1998. Published: July 1, 1999

The Stability of Nash-Cournot Equilibria
in Labor Managed Oligopolies

Weiye Li
Ferenc Szidarovszky

Abstract

This paper examines the asymptotical stability of equilibria in discrete dynamic labor-
managed oligopolies. First the equivalence of the equilibrium problem of a large class of
nonlinear games and the equilibrium problem of a class of discrete dynamic systems is veri-
fied. Stability conditions are then derived for a certain class of dynamic models, and these
results are finally applied to labor-managed oligopolies. The economic interpretation of the
stability conditions are also presented.
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1 Introduction

The stability of dynamic economic systems is one of the most frequently discussed problem
areas in the modern economic literature. Stability conditions are usually obtained by using
the stability theory of linear or nonlinear differential and difference equations.

One of the most important model classes consists of the different variants of the Cournot
oligopoly model. A comprehensive summary of such models and stability results in both con-
tinuous and discrete cases is presented in Okuguchi [1], and Okuguchi and Szidarovszky [2].
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In this paper the stability of labor-managed dynamic oligopolies will be examined. Gen-
eral stability conditions will be first introduced, and will be then applied to special models.

The paper is organized as follows. In Section 2 some general results are presented, and
in Section 3, these results are applied to a special class of dynamic models, and in Section 4
the further special case of labor-managed oligopolies will be analyzed. Section 5 concludes
the paper.

2 Nash-Cournot Equilibria and Fixed Points of Dy-
namic Systems

Oligopoly is a state of industry where a small N number of firms produce M homogeneous
goods or close substitutes competitively. The multiproduct Cournot Oligopolyis an N-person
noncooperative game defined as follows. Let x,(cm) denote the output of firm k of product
m, then the output of the firm can be characterized by output vector xx, = (XS), - xf(M)).
Let s = YN, x) denote the output vector of the industry, and assume that the price vector
depends on s: p = p(s). If ¢x (k= 1,2,..., N) denotes the cost function of firm k, then its

profit can be expressed as

o (X1, ., Xn) = Xi P(S) — Cxc(xx)- (2.1)

If Xy C ]Rl_\F41 denotes the set of all feasible outputs for firm £, then the resulting game can
be given in strategic form as I' = (N; Xy, ..., Xn; ¢1,...,on5). In the single product case,
M =1, and we may select Xj = [0, L], where Ly is the capacity limit of firm £.

A vector x* = (x},%5,..,x5) € X = X; & X2 & ... ® Xy is called a Nash-Cournot
equilibrium point of game T, if for £k =1,2,..., N,

1. xp € X;

2. For arbitrary xy € X,

* *

Or(XT5 s X1 X, X150 X)) 2> Qr(XT, o, X 15 Xk, X 15 -0 X)) -
In other words, the Nash-Cournot equilibrium is an N-tuple of strategies at which each
player maximizes his own payoff with respect to his own strategy selection, given the strategy
choices of all other players. If a Nash-Cournot equilibrium x* exists and is an interior

point of X, and all ¢, are continuously differentiable in X, then for £ = 1,2,..., N and
m=1,2,..., M,

O
ozi™

= 0, (2.2)

where the partial derivatives are taken with respect to each component.

In the continuous case, it is natural to assume that the rate of change of the k-th player’s
strategy selection with respect to time is positively proportional to his marginal payoff with
respect to his strategy, namely,

}'(k = Ckvk@k(x); k = 1, 2, ceey N, (23)



where V¢, denotes the gradient of ¢ with respect to xi, and Cy is a diagonal constant ma-
trix with positive diagonal elements. It is obvious that the interior Nash-Cournot equilibrium
is a fixed point of the dynamical system (2.3).
In the discrete case, each player maximizes his payoff in every time period based on
his knowledge on the strategies expected from the other players. Such expectations rely in
general on the actual and the expected strategies taken in the last time periods.
Assume that equation (2.2) has a unique soloution xy in terms of variables X1, ..., Xx_1, Xk11, ---, XN
as

Xk = fk(XI: oy Xk—1y) Xk415 -0 XN)-

Besides, let x(t) be the actual strategy of player k and x¥(¢) his expectation on the strategy
of player 7 at time ¢ (i # k). Assume X¥(¢ + 1) is a function of only x;(t) and x¥(¢), that is,

X (t+1) = gf(x(t), X (t)). (2.4)
In addition, we assume that
gi(a,a) = a (2.5)

for any vector a and k # 4, for which the reason is obvious.
As a special case, if gf is a convex linear combination, i.e.,

g(a,b) = Dfa+(I-Dj)b, (2.6)

where D is a diagonal matrix with entries in (0,1]. This scheme is called the adaptive
expectation. Obviously, any adaptive expectation satisfies the natural assumption (2.5).

Due to the fact that each player maximizes his payoff based on the expected strategies
of the others, and assuming interior optimum throughout, it is easy to see that for all £,

xie(t) = fi(Z (L), -y g (), Tipq (1), - RN (E)). (2.7)

The dynamical system with state variables
{x(®), &(t) | kA k=1, N} (2:8)

is well determined by relations (2.4), (2.5), (2.7) and the choice of the initial expectations
{xk(0) 'k #1i; k,i=1,...,N}. If we start the process at the Nash-Cournot equilibrium by
setting the initial expectations X¥(0) = xj;. for all k # i, then x,(0) = xj. by (2.7) and (2.2),
x¥(1) = x}. by the assumption of gy, etc. Inductively, we have x¥(t) = x,(t) = x}. for all
t. Thus the N copies of the Nash-Cournot equilibrium is the fixed point of the dynamical
system (2.8) when the order of variables in the system is arraged properly.

The above results can be summarized in the following theorem.

Theorem 2.1 Assume that for all k, @ is continuously differentiable as an M N variable
function. Then the interior Nash-Cournot equilibrium of the above N -person game corre-
sponds to some fized point of the dynamical system governed by (2.3) (when the system is
continuous), or (2.2), (2.4), (2.5) and (2.7) (when the system is discrete).
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It is also easy to see that any fixed point is an interior equilibrium if ¢} is concave in xy
for all k. Therefore a corollary is derived.

Corollary 2.2 In addition to the assumption of Theorem 2.1, assume that @y is concave
in Xy for all k. Then the interior Nash-Cournot equilibrium problem of the above N-person
game is equivalent to the fized point problem of the dynamical system governed by (2.8) (when
the system is continuous), or (2.2), (2.4), (2.5) and (2.7) (when the system is discrete).

The stability or asymptotical stability of the Nash-Cournot equilibrium is of great in-
terest in economic theory. It is well known that the eigenvalues of the Jacobian matrix of
the transition function of a dynamical system at the fixed point can determine the stability
and asymptotical stability in most cases. See for example, Bellman [3], and Li and Szi-
darovszky [4]. For instance, for a continuous system, if all eigenvalues have negative real
parts, then the fixed point is asymptotically stable; for a discrete system, if all eigenvalues
are inside the unit circle, then this fixed point is asymptotically stable. It is also known
from the theory of differential and difference equations that if at least one eigenvalue of
the Jacobian matrix at the equilibrium has positive real parts then the equilibrium of the
continuous system is unstable; and if at least one eigenvalue is outside the unit circle, then
the equilibrium of the discret system is unstable. These sufficient conditions are easy to be
applied to the continuous system (2.3) by considering the eigenvalues of the Jacobian matrix
8(C122 6««:1 -+ Cn ‘;‘PN )

3(x1, sy XN)
In the rest of thls paper the discrete case will be analysed. Introduced first the notations

X = (x1, Xz, ..., Xn) T € R,

S (el ozl Sl 22 22 2 . 3N ZN ~N N—)NM
x = (%, %, ., %% %2, %%, o xN k), %N )T e RNONM

Accordingly, denote g, a mapping from (X; & Xo® - Xn) B (Xo®--- B Xn)D (X1 D
X3€B"'€BXN)@"'@(Xl@"'@XN—l) into (X2@"'@XN)@(Xl@X3€B"'€BXN)@
"@(Xl@"'@XN_l), by

gx,%) = (g &) |i#kk i=1,2,.,N).

Denote f, a mapping from (X ®--- @ Xy)® (X1 ®X3D---®Xn)D--- B (X1D--- D Xn_1)
into (X1 ® Xy ®---® Xn), by

F(R) = (B, .. R, Ky, %) [k =1,2,.,N).
Then system (2.8) is described by the following simple equalities
x(t) = f(x(t)) (2.9)
x(t+1) = g(x(t), x(t)),
which can be rewritten as

x(t+1) = f(g(x(t), %(t)) (2.10)
)



The N-direct sum of the Nash-Cournot equilibrium up to some permutation of the com-
ponents is a fixed point of system (2.9) or (2.10). The Jacobian matrix of the transition
function is

Ox(t+1),X(t+1)) _ ( Df(g(x(t), x(t))) - D1g(x(t), X(t)) Df(g(x(t), X(t))) - D2g(x(t), X(t)) )
A(x(t), x(t)) Dyg(x(t), X(t)) Dog(x(t), X(t)) ’

where D, Dy, and D, are differential operations with respect to g, x, x, respectively. That
is, Df, Dyg, and D,g are the Jacobian matrices of f and g with respect to these variables.
For simplicity, let us denote the Jacobian matrix of (2.10) at the fixed point as

J— Df -Dy,g Df-D-sg
N Dig D,g )

Let (u,v)T be an eigenvector associated to an eigenvalue A of J. Then

Df(Digu+Daogv) = Au
Digu+Daegv = Av.

Simple substitution derives either A = 0 or u = Df v. A zero eigenvalue does not distroy
stability and asymptotical stability. If A # 0, then

(D1gDf +Dag)v = Av.
That is, any nonzero eigenvalue of J must be an eigenvalue of matrix

whose size is only (N — 1)NM x (N — 1)NM. If this matrix has all eigenvalues inside the
unit circle, then the Nash-Cournot equilibrium is asymptotically stable.

3 Stability in Single-product Oligopolies with Payoff
Fuctions ¢;(xy, ¥z ;) and Adapted Expectations

The general approach outlined above requires a tedious computation in manipulating with
matrix (2.11). In practice, this approach can be handled tackfully. The main idea is to reduce
the number of variables in the dynamical system. This idea can be realized when the firms
form expectations on the output of the rest of the industry, since the N (M — 1)-dimensional
expectation variable becomes only M-dimensional. Another case, when reduction in the
dimension is possible, especially when the M goods are mutaually independent, i.e., the
payoff function of each player is the sum of M functions where each of them is a payoff
corresponding to a single good. Thus system (2.9) can be decomposed into M equivalent
smaller dimensional subsystems.

Consider next a special single product case I' = (N; X1, ..., Xn; ¢1, ..., oN), Where X =
0, Ly, @r(z1, T2, ...y Tn) = &(Tk, X i). For example, in the case of single product
oligopolies without product differentiation, ¢g(zx, Yizk Ti) = T D(Tk + Xizk Ti) — cx(Tk)-
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If adaptive expectations are assumed, it coincides with g¥(a,b) = dya + (1 — di)b for all
1 # k, and thus

Sp(t+1) = disp(t) + (1 — d)5k(?)
with s3(2) = X, 2i(t) and 5;(t) = X, ., T4(t). This gives us
:ck(t) = fk(gk(t)), and §k(t + 1) = gk(sk(t), gk(t))

Thus system (2.9) can be reduced to

In this case, matrix (2.11) becomes

Dlng+D2
0 di --- di Df 1—d;
do 0 --- dy Dfs 1—dy
- : : : .. + )
dy dy -+ dy Dfy 1—dy
= A+ab”,
with
1—di—diDfy
A 1 —dy —dyDfy ’
1—dy —dyDfn
d1 Dfl
d D
a = _2 , and b = .f2
dy Dfn

The characteristic polynomial of this matrix is given as

#(A) = det(A — M + ab’)
= det(A — AI) - det(I+ (A — AI) ‘ab”).

It is well known that if I is the n X n identity matrix, and u and v are n-dimensional real
(or complex) vectors, then

det(IT+uv’) = 1+v'u,



which can be proved easily by using finite induction with respect to n. Therefore
#(A) = det(A—AI)-[1+bT(A—A)"ta] (3.2)

— ﬁ(l—dk—defk—)\)<1+§: di D )
k=1 i l—dy—dp Dfy — A

Introduce the notation v, = 1—dy—dy D fr, & = di, D f, and denote by 1y < mp < -+ < 15
the distinct -y, values with multiplicities 71, 7, ..., rs. Let I; = {i ‘ v =m;},and 6; = Yier, i
forj =1, 2, ..., s. Then solving for the roots of (3.2) becomes finding the solution to equation

f[(A—nj)’j (Z i —1) = 0. (3.3)

j=1 A=

The left hand side is an Nth-degree polynomial with roots n; with multiplicities 7; — 1 when
6; # 0, or with multiplicities r; when 6; = 0. All other roots of (3.3) are the roots of function

G = YU

j=1 )‘_773'

~1 (3.4)

Finding the roots of this function is equivalent to finding the solution of a polynomial equa-
tion of degree which equals the number of nonzero ¢;. It is easy to see that if all roots of
G(-) are real, then (3.3) has N real roots.

The following result gives a characterization of the roots of G(-).

Lemma 3.1 Assume that all 0; # 0, and the number of sign changes of sequence {601, 6s, ..., 05}
is at most 1 in such a way that when the sign change occurs, it is from "=" to "+". Then
(3.4) has ezactly s real roots. If there is one sign change, then s — 2 roots are in (ny, ns),
one is in (—oo, m1) and one is in (s, 0o). If there is no sign change, then s — 1 roots are in
(m, ns), and the last root is in (—oo, m1) when all 6; < 0, or in (ns, co) when all 6; > 0.

Proof: Under the assumption of the lemma, G(-) has the following properties.

(a) G(—0) = G(0) = —1.

(b) Ifall §; < 0, then G(\) > —1 for any A < n1; G(A\) < —1 for any A > n,. Furthermore,
limy ;0 G(A) = 400, limy ;10 G(A) = —00 .

(c) Ifall §; > 0, then G(A\) < —1 for any A < ny; G(A) > —1 for any A > n,. Furthermore,

lim/\_mj,() G()\) = —0Q0, lim/\_>nj+() G(A) = +00.
(d) If the only sign change is at [ and 6, < 0 and 6,41 > 0, then G(\) < —1 for any
A € (m, my1). Furthermore, limy o G(A) = 400, limyy,40G(A) = —oo for j < [

lim,\_mj_o G()\) = —0Q, limA_mijO G()\) = 400 for j > (.

Using the Intermediate Value Theorem and the above properties of G(-), it is easy to see
that the graph of G(-) has only three patterns which correspond to the three cases as given
before, and the graph intersects the horizontal axis exactly s times in all cases.
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All9; <0 All9; >0 One sign change
O

From the above discussion, we know that the characteristic equation of matrix (2.11) has
at most N — 2 roots in the closed interval [n;, n5]. To ensure that all the eigenvalues have
absolute values less than 1, we need that all |n;| < 1 plus either G(—1) < 0 or G(1) < 0,
or both G(—1) < 0 and G(1) < 0, fully depending whether there are either all §; < 0 or all
#; > 0, or there is one sign change occuring in the way as stated in Lemma 3.1.

Theorem 3.2 Assume that system (3.1) has an interior Nash-Cournot equilibrium and all
conditions of Lemma 3.1 are met. Then any one of the following three cases ensures that
the Nash-Cournot equilibrium is asymptotically stable:

1. All|n;| <1, all0; <0, and G(—1) < 0.

2. All|n;| <1, all0; >0, and G(1) < 0.

3. All ;] < 1,0, <0 forj<l,6<0,604 >0,0;>0forj>1l+1andG(-1) <0,
G(1) <0.

As a special case, assume that all Dfy € (=1, 0]. Then all vy, = 1—my—my D fy, € [0, 1),
and all § = my, D fy < 0. So all |n;[ < 1, and all 0; = 3¢/, & < 0. Therefore, we have

Corollary 3.3 Assume that system (3.1) has an interior Nash-Cournot equilibrium. If for
allk, =1 < Dfy <0, and G(—1) < 0, then the equilibrium is asymptotically stable.

Similarly to Theorem 3.2, one can prove the following necessary stability conditions.

Theorem 3.4 Assume that system (3.1) has an interior stable Nash-Cournot equilibrium,
all conditions of Lemma 3.1 are met, and s > 2.

1. If all 6; < 0, then |n;j| < 1 for j = 1,2,...,s — 1. Furthermore, either n, < 1 and
G(-1) <0 orns >1 and G(—1) <0 and G(1) > 0;

2. If all 6; > 0, then |n;| < 1 for j =2,...,s. Furthermore, either m; > —1 and G(1) <0
orm < —1 and G(—1) >0 and G(1) < 0;

3. If0; >0 forj <1,60, <0, 0,41 >0,0; >0 forj >1+1, then |n;| <1 forj=1,2,..,s.
Furthermore,G(—1) < 0 and G(1) < 0.



4 Stability in Labor Managed Oligopolies

As a particular example, we will discuss the asymptotical stability of the Nash-Cournot
equilibrium of the single product case of labor managed oligopolies. Assume now that N
firms produce a single good and the payoff function of each firm is the surplus per labor of
the firm. Let p be the price (or inverse demand) function which is assumed to be a function
of the total production of the industry. Let w be the competitive wage rate, and c; the fixed
cost of firm k. Let h; be the number of labors in firm & as a function of the production level
of firm k. Then the payoff function of firm £ is given as

7 p(8) — whg() — ¢

= 4.1
(Pk(xla ’ xN) hk(xk) ( )

with s = ¥ | x;. Assuming interior equilibrium, we have
Oy _ (p(s) + z1 P/ (5)) b (1) — (k p(5) — ck) My, (k) -0 (4.2)

The existence of the Nash-Cournot equilibrium has been proved under realistic conditions
in Okuguchi [5]. From (4.2), we get

(p(s) + 25 P'(5)) hi(wx) — (2 p(s) — ) b (1) = 0. (4.3)

Assume that for each s, = 3, z;, there is a unique solution for z, z; = fi(sx). Using the
chain rule to differentiate both sides of equality (4.3) with respect to sz, we get

[p'(s) (L + Dfi) + Dfep'(s) + zx p"(s) (1 + D) hie(zk) + [p(s) + zx P/ (5)] hp (k) D
—[Dfr p(s) + zxp'(s)(1 + D fi)] by (zx) — [zx p(s) — k| By Dfy = 0.

Solve for D f; to get

xy, p'(8) by (wx) — [P (5) + 2k p" (5)] hi ()
29/ (s) + zx " ()] b (k) — [2x p(s) — cx] hig (k)
P'(s) [zx P (zx)]" — [zx p(2k)]" P ()
[z p(2k)]" hie () =[5 P(8) — ] B (Tk)

D f (4.4)

We can study the magnitudes of D f; to draw conclusions on the stability or asymptotical
stability of the labor-managed oligopoly by using the results in Section 3. As a special case,
consider the linear case, when p(s) = As + b with A < 0, b > 0, and hg(zg) = axzk + by,
with a; > 0, by, > 0 for all k. From (4.4), Dfy, = _Qkak € (—1,0]. Thus Corollary 3.3 implies
the following result:

Corollary 4.1 Assume that a linear labor managed oligopoly has an interior Nash-Cournot
dibi
equilibrium, and assume that G(—=1) = ¥, % — 1 < 0 at the equilibrium. Then
2—dj (1— £

2hy,

the equilibrium is asymptotically stable. If G(—1) > 0, then the equilibrium is unstable.



5 Economic Interpretation

Notice that the stability condition can be rewritten as

k < 1. 5.1
X_: —d, (1 - ) (5-1)

Here di € (0,1], hx > 0, by > 0. This condition holds if all the numbers d’“hbk are sufficiently
small. It happens if for all k, either djy or by is small enough, or Ay is sufﬁc1ently large. That
is, either the speed of adjustment is small requiring slow speed in following the actual data
in the adaptive expectation, or the labor requirement for producing zero output is small, or
the labor requirement for producing equilibrium output is large enough. As a further special
case assume symmetry, that is, assume that dy, = d, by = b, and hy = h. Then (5.1) reduces
to the following:

dbN
2h 1

2-d(1-2%) s

which can be further simplified as follows:

db
SN-D+d < 2 (5.2)

If b and h are given, then (5.2) is equivalent to the relation

2

d < — . (5.3)
1+ 20
If d and h are fixed, then (5.2) can be rewritten as
2—d
2h
and if b and d are given, then
db(N —1)
h > ————= 5.9
22—d) (5.5)

given actual upper bounds for the different variables. In the literature of labor managed
oligopolies several authors assume that hi(0) = 0 for all k. In this case by = 0, and
therefore condition (5.1) is always satisfied showing that the interior equilibrium is always
asymptotically stable.

6 Conclusions

In this paper dynamic labor managed oligopolies were examined with discrete time scales.
In addition to deriving general stability conditions for the nonlinear case, the special case of
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linear price and labor functions was investigated in details. We have shown that the interior
equilibrium is asymptotically stable if for all firms, either the speed of adjustment, or the
labor requirement for zero output is sufficiently small, or the labor needed to produce the
equilibrium output is large enough. Particular bounds have been derived for the relevant
parameters.
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